

REGIONE DEL VENETO

Provincia di Vicenza

COMUNE DI TORRI DI QUARTESOLO

4°PIANO DEGLI INTERVENTI

STUDIO DI COMPATIBILITA' IDRAULICA

D.G.R.V. 2948/2009

geol. Simone Barbieri

(firmato digitalmente)

Committente: Amministrazione Comunale di Torri di Quartesolo

Data: 27 luglio 2018

La legge sui diritti d'autore (22/04/41 n° 633) e quella istitutiva dell'Ordine Professionale dei Geologi (03/02/63 n° 112) vietano la riproduzione ed utilizzazione anche parziale di questo documento, senza la preventiva autorizzazione degli autori.

2

1. PREMESSE

Su incarico e per conto dell'Amministrazione Comunale di Torri di Quartesolo è stato predisposto il presente 'STUDIO DI COMPATIBILITA' IDRAULICA" a supporto del 4º PIANO DEGLI INTERVENTI.

Il presente studio è stato redatto in ottemperanza alla **D.G.R. del Veneto n°3637 del 13/12/2002** "L. 3 agosto 1998, n. 267 - Individuazione e perimetrazione delle aree a rischio idraulico e idrogeologico. Indicazioni per la formazione dei nuovi strumenti urbanistici", le cui modalità operative sono state fissate dalla **D.G.R. del Veneto n° 2948 del 2009** "Valutazione di compatibilità idraulica per la redazione degli strumenti urbanistici - Modalità operative ed indicazioni tecniche"; tale normativa individua i seguenti scopi nell'ambito delle trasformazioni urbanistiche:

- "Al fine di consentire una più efficace prevenzione dei dissesti idraulici ed idrogeologici ogni nuovo strumento urbanistico comunale (PAT/PATI o PI) deve contenere uno studio di compatibilità idraulica che valuti per le nuove previsioni urbanistiche le interferenze che queste hanno con i dissesti idraulici presenti e le possibili alterazioni causate al regime idraulico.
- In relazione alla necessità di non appesantire l'iter procedurale, la "valutazione" di cui sopra è necessaria solo per gli strumenti urbanistici comunali (PAT/PATI o PI), o varianti che comportino una trasformazione territoriale che possa modificare il regime idraulico. Per le varianti che non comportano alcuna alterazione del regime idraulico ovvero comportano un'alterazione non significativa la valutazione di compatibilità idraulica è sostituita dalla relativa asseverazione del tecnico estensore dello strumento urbanistico attestante che ricorre questa condizione. La valutazione di compatibilità idraulica non sostituisce ulteriori studi e atti istruttori di qualunque tipo richiesti al soggetto promotore dalla normativa statale e regionale, in quanto applicabili.
- Lo studio di compatibilità idraulica è parte integrante dello strumento urbanistico e ne dimostra la coerenza con le condizioni idrauliche del territorio. Nella valutazione di compatibilità idraulica si deve assumere come riferimento tutta l'area interessata dallo strumento urbanistico in esame, cioè l'intero territorio comunale per i nuovi strumenti urbanistici (o anche più Comuni per strumenti intercomunali) PAT/PATI o PI, ovvero le aree interessate dalle nuove previsioni urbanistiche, oltre che quelle strettamente connesse, per le varianti agli strumenti urbanistici vigenti. Il grado di approfondimento e dettaglio della valutazione di compatibilità idraulica dovrà essere rapportato all'entità e, soprattutto, alla tipologia delle nuove previsioni urbanistiche. Per i nuovi strumenti urbanistici, o per le varianti, dovranno essere analizzate le problematiche di carattere idraulico, individuate le zone di tutela e fasce di rispetto a fini idraulici ed idrogeologici nonché dettate le specifiche discipline per non aggravare l'esistente livello di rischio idraulico, fino ad indicare tipologia e consistenza delle misure compensative da adottare nell'attuazione delle previsioni urbanistiche. Nel corso del complessivo processo approvativo degli interventi urbanistico-edilizi è richiesta con progressiva definizione la individuazione puntuale delle misure compensative, eventualmente articolata tra pianificazione strutturale (Piano di assetto del Territorio PAT), operativa (Piano degli Interventi PI), ovvero Piani Urbanistici Attuativi PUA. Nel caso di varianti

Sede operativa: VICENZA Via L. L. Zamenhof n.817 , 36100 Vicenza - Cell: 3478537059 E-Mail: simonebarbieri74@gmail.com - Pec: simonebarbieri.74@epap.sicurezzapostale.it C.F. BRBSMN74C29E864X - P.I.V.A. : 03084090244

3

successive, per le analisi idrauliche di carattere generale si può anche fare rimando alla valutazione di compatibilità già esaminato in occasione di precedenti strumenti urbanistici.

Nella valutazione devono essere verificate le variazioni della permeabilità e della risposta idrologica dell'area interessata conseguenti alle previste mutate caratteristiche territoriali nonché devono essere individuate idonee misure compensative, come nel caso di zone non a rischio di inquinamento della falda, il reperimento di nuove superfici atte a favorire l'infiltrazione delle acque o la realizzazione di nuovi volumi di invaso, finalizzate a non modificare il grado di permeabilità del suolo e le modalità di risposta del territorio agli eventi meteorici. Deve essere quindi definita la variazione dei contributi specifici delle singole aree prodotte dalle trasformazioni dell'uso del suolo e verificata la capacità della rete drenante di sopportare i nuovi apporti. In particolare, in relazione alle caratteristiche della rete idraulica naturale o artificiale che deve accogliere le acque derivanti dagli afflussi meteorici, dovranno essere stimate le portate massime scaricabili e definiti gli accorgimenti tecnici per evitarne il superamento in caso di eventi estremi."

> Lo studio di compatibilità può altresì prevedere la realizzazione di interventi di mitigazione del rischio, indicandone l'efficacia in termini di riduzione del pericolo"

2. QUADRO GENERALE DI RIFERIMENTO

La Valutazione di compatibilità idraulica viene redatta a supporto di ogni nuovo strumento urbanistico, come previsto dalla Legge 267 del 30/08/1998 ".....al fine di consentire una più efficace prevenzione dei dissesti idrogeologici", valutando "..... le possibili alterazioni del regime idraulico....." che le nuove previsioni urbanistiche possono causare. Per l'ambito oggetto di studio "..... dovranno essere analizzate le problematiche di carattere idraulico, individuate le soluzioni di massima nonché fornite le prescrizioni per l'attuazione di queste".

Nella relazione in oggetto "..... devono essere verificate le variazioni della permeabilità e della risposta idrologica dell'area interessata conseguenti alle previste mutate caratteristiche territoriali nonché devono essere individuate idonee misure compensative [.....], il reperimento di nuove superfici atte a favorire l'infiltrazione delle acque o la realizzazione di nuovi volumi di invaso, finalizzate a non modificare il grado di permeabilità del suolo e le modalità di risposta del territorio agli eventi meteorici".

Si evidenzia inoltre "..... la possibilità di utilizzare [.....] le zone a standard Fc a Parco Urbano (verde pubblico) prive di opere, quali aree di laminazione per le piogge".

Circa il recapito delle acque si consiglia di evitare, se possibile, "..... la concentrazione degli scarichi delle acque meteoriche, favorendo invece la diffusione sul territorio di punti di recapito con l'obiettivo di ridurre i colmi di piena nei canali recipienti", nonché "..... si può valutare la possibilità dell'inserimento di dispositivi che incrementino i processi di infiltrazione nel sottosuolo".

Si indica infine "..... la necessità [.....] di non fermarsi ad analizzare gli aspetti meramente quantitativi, ma deve verificare anche la compatibilità della qualità delle acque scaricate con l'effettiva funzione del ricettore".

Sede operativa: VICENZA Via L. L. Zamenhof n.817 , 36100 Vicenza - Cell: 3478537059 E-Mail: simonebarbieri74@gmail.com - Pec: simonebarbieri.74@epap.sicurezzapostale.it C.F. BRBSMN74C29E864X - P.I.V.A. : 03084090244

Si ricorda che gli interventi realizzati in conseguenza dello studio di compatibilità idraulica sono ragguagliabili agli oneri di urbanizzazione primaria.

La Legge 11 dicembre 2000 n°365 (di conversione del D.L. 279/2000), recante le norme riguardanti gli "Interventi urgenti per le aree a rischio idro-geologico molto elevato e in materia di protezione civile, nonché a favore di zone colpite da calamità naturali", ha introdotto alcune rilevanti novità rispetto all'iter procedurale di adozione del piano stralcio per l'assetto idrogeologico, in precedenza previsto dalla legislazione del 1998 (D.L. 180/98 convertito con la Legge n°267 del 3 agosto 1998).

Le novità inerenti alle problematiche relative alla compilazione e adozione del suddetto piano sono:

- · Un'attività straordinaria di sorveglianza e ricognizione lungo i corsi d'acqua e le relative pertinenze eseguita dalle Regioni d'intesa con le Province, con il coordinamento dell'Autorità di Bacino.
- · La verifica dei progetti dei piani di stralcio adottati con le situazioni di rischio adottate con l'attività di sorveglianza e ricognizione.
- · La predisposizione e trasmissione ai sindaci interessati di un documento di sintesi che descriva la situazione del rischio idrogeologico del territorio comunale.
- · La convocazione da parte delle Regioni, delle conferenze programmatiche, alle quali parteciperanno oltre alle Regioni ed alle Autorità di Bacino, i Sindaci e le Province, con il compito di esprimere un parere sui progetti di piano.
- · L'adozione del piani da parte del comitato istituzionale, tenuto conto delle osservazioni pervenute, nonché delle risultanze delle conferenze programmatiche.

Prima dell'emanazione della ricordata Legge n°365/2000, a seguito dell'emanazione del D.L. n°180/89 vennero stabilite un insieme di azioni pianificatorie: un piano straordinario degli interventi più urgenti riguardanti le aree a massima pericolosità ed un piano più completo, chiamato piano per l'assetto idrogeologico dove devono trovare riferimento tutte le aree a rischio del territorio.

Nella predisposizione del progetto di piano di stralcio è stato recepito quanto precedentemente non era stato incluso nel piano straordinario relativamente alle aree a livello di rischio inferiore a quello molto elevato. Per le aree a rischio molto elevato gli approfondimenti effettuati nel frattempo e l'opportunità di omogeneizzare gli aspetti normativi, ha portato a riclassificarle in termini di pericolosità. Si rammenta che le Norme di attuazione di tale piano sono conformi ai principi generali previsti dal D.P.C.M. 29 settembre 1998 per la salvaguardia degli elementi a rischio.

In particolare vengono classificati i territori in funzione delle condizioni di pericolosità e rischio nelle seguenti classi:

pericolosità rischio

P1 (pericolosità moderata)
R1 (rischio moderato)
P2 (pericolosità media)
R2 (rischio medio)
P3 (pericolosità elevata)
R3 (rischio elevato)

P4 (pericolosità molto elevata) R4 (rischio molto elevato)

5

3. INQUADRAMENTO GENERALE DELL'AREA (tratto da Relazione geologica a corredo del PAT

del Comune di Torri di Q.Lo, a cura Geol. Filippo Baratto marzo 2013)

3.1. Premessa

Il Comune di Torri di Quartesolo è ubicato nella porzione mediana della Provincia di Vicenza. Esso

confina rispettivamente con i Comuni di: Gazzo (PD), Grumolo delle Abbadesse, Longare, Quinto

Vicentino, Vicenza. La superficie è di 18,67 Km² mentre il perimetro comunale è di circa 26211 m.

Gli insediamenti maggiori del Comune, oltre al capoluogo sono le località di Lerino ad Est del

capoluogo e di Marola, posta a Nord della sede comunale.

Le principali arterie stradali che interessano il territorio comunale sono: l'autostrada A4 Milano- Venezia

che attraversa il territorio comunale a Sud in direzione Ovest-Est, l'autostrada A31 che attraversa in

direzione Nord-Sud al centro del territorio comunale e la S.S. 11 Padana Superiore che transita in

direzione Sudovest-Nordest nella parte meridionale.

La rete idrografica è caratterizzata dal Fiume Tesina che scorre con una direzione principale da Nord a

Sud.

Dal punto di vista altimetrico il territorio comunale presenta una altitudine media è di 30 m slm e una

pendenza uniforme verso SE, infatti le quote maggiori, attorno ai 34 m slm circa, si hanno in

corrispondenza delle porzioni di territorio settentrionali e decrescono man mano che si procede verso

Sud-Sud-Est, dove le quote prevalenti oscillano tra 25 e 27 m slm.

3.2. Inquadramento idrografico

Il territorio comunale di Torri di Quartesolo appartiene al sistema idrografico del Bacino del

Bacchiglione. L'area comunale è caratterizzata da numerosi corsi d'acqua e da una rete secondaria di

canali e scoli consorziali e non, oltre che da fossati interpoderali. I principali corsi d'acqua hanno una

direzione generale da Nord a Sud e sono collegati tra loro da una serie di rogge o scoli a prevalente

direzione longitudinale. Le aste che attraversano il Comune sono:

- Fiume Tesina, che nasce presso Sandrigo ed è fiume di risorgiva. Esso fa parte del Bacino

idrografico "Astico-Tesina". Il Tesina è un affluente del Torrente Astico, che nasce sull'Altopiano di

Folgaria-Lavarone, a 1450 m slm, e si getta nel Fiume Bacchiglione presso Longare (Loc. S. Pietro

Intrigona), a valle di Torri di Quartesolo. Il Tesina è un fiume caratterizzato da importanti e spesso

"non preannunciate" piene con conseguenti esondazioni e danni. Studi specifici se ne contano una

ventina nel XX° secolo. La cause sono molteplici e sono da ricercare nel carattere tipicamente

torrentizio dell'asta, trattandosi di bacino montano; nella diminuzione dei tempi di percorrenza a

causa dell'incremento dell'impermeabilizzazione urbana, specie nella porzione medio - bassa del suo

sviluppo; nei numerosi restringimenti (ponti) legati alla viabilità. Per quanto riguarda Torri di

Quartesolo un punto critico è sicuramente il ponte romano della SR 11- Padana Superiore, poiché la

Sede operativa: VICENZA Via L. L. Zamenhof n.817, 36100 Vicenza - Cell: 3478537059 E-Mail: simonebarbieri74@qmail.com - Pec: simonebarbieri74@qpap.sicurezzapostale.it

C.F. BRBSMN74C29E864X - P.I.V.A.: 03084090244

6

sezione idraulica è ridotta. Esso è anche il ricettore di numerose Rogge e Scoli. · Diramazione

Quintarello che interessa la zona Nord orientale del Comune ed è affluente di destra;

- Ramo Quintarello, che come il precedente si immette in destra orografica ed è parallelo pure esso

all'autostrada;

- Roggia Tribolo affluente di destra che delimita la località Villaggio Monte Santo;

- Ramo Settecà affluente di destra che delimita il capoluogo a Nord;

- Roggia Regazzo affluente di sinistra poco a Nord di Marola;

- Ramo Bertarella affluente di destra, fa' da confine Ovest;

Canale Rio Settimo caratterizza la porzione SudOvest del territorio comunale a valle dello svincolo

autostradale, come anche lo

- Scolo Settimo che funge da confine Sud;

- Scarico Settimo, passa poco più a nord del Canale Rio Settimo e attraversando la A31 circonda a

Sud la zona commerciale. tra questo e lo Scolo Settimo esiste anche un collegamento dato dal canale

Settimo.

3.3. Inquadramento geologico

Di seguito si illustrano le condizioni geologiche significative, ai fini dello studio in oggetto.

Dal punto di vista litologico il territorio è costituito da sedimenti sciolti di origine fluvioglaciale e

alluvionale. I depositi fluvioglaciali sono legati alla Conoide dell'Astico, la cui area di influenza nella zona

di Torri di Quartesolo si estende in sinistra fiume Tesina sino alla sua fascia di divagazione, dato che il

Tesina stesso raccoglie le acque del torrente Astico.

I depositi alluvionali sono legati invece al sistema deposizionale del fiume Brenta ossia al megafan del

Brenta, al quale si aggiungono gli apporti del Bacchiglione.

I depositi di conoide dell'Astico a monte della zona in esame sono caratterizzati da elementi grossolani

quali ciottoli e ghiaie, immersi in matrice prevalentemente sabbiosa. La granulometria dei depositi è,

normalmente, legata all'energia di trasporto delle acque, che nel caso degli scaricatori glaciali nel passato

e dei torrenti attuali, in uscita dalla zona pedemontana, è elevata, grazie anche alla pendenza topografica.

I depositi alluvionali tipici della zona in studio, invece, hanno una granulometria minore a causa della

minore energia di trasporto delle acque fluviali che solcano zone a minor gradiente topografico. Tali

depositi sono quindi costituiti prevalentemente da sabbie intercalate a limi e argille.

In particolare, si distinguono tre tipi di terreni:

1- Terreni grossolani, prevalentemente ghiaioso-sabbiosi, rinvenibili lungo l'alveo del fiume Tesina

nel tratto vicino all'abitato di Marola e nel tratto vicino all'abitato di Torri di Quartesolo; altri

sedimenti di questo tipo si rinvengono più ad Est, lungo un antico tracciato fluviale ad

andamento Nord-Sud, legato alle probabili divagazioni dei rami fluviali appartenenti al sistema

dell'Astico e/o del Brenta.

7

2- Terreni prevalentemente sabbiosi, che coprono gran parte del territorio comunale e sono legati

a corsi d'acqua ormai estinti che divagavano con una certa energia;

3- Terreni prevalentemente limoso-argillosi che costituiscono piccole plaghe di territorio e sono indici di bassa energia di trasporto o aree depresse dove le acque ristagnavano; si rinvengono

limitati affioramenti a Nord nell'abitato di Marola, a sud dell'abitato di Lerino, in destra e

sinistra Tesina in corrispondenza dell'abitato di Torri di Quartesolo.

Il passaggio dalla zona pedemontana alla pianura aperta è caratterizzato da un'interdigitazione dei

depositi di conoide con quelli alluvionali

3.4. Inquadramento idrogeologico

L'area di Torri di Quartesolo è posta a Sud del limite inferiore delle risorgive. Il materasso alluvionale

sciolto che costituisce il sottosuolo della zona ha uno spessore variabile (180-250 m) al di sotto del quale

affiora il substrato roccioso. I depositi sciolti sono costituiti nella parte più profonda da alluvioni

prevalentemente ghiaioso-sabbiose, legate alla conoide fluvioglaciale dell'Astico, e nella parte più

superficiale da sabbie, limi e argille, riferibili ai depositi alluvionali del Brenta.

Tale materasso ospita un sistema acquifero multifalde, ossia una falda superficiale libera e una serie di

falde profonde sovrapposte, in pressione.

La falda superficiale, denominata falda freatica è in genere libera e poco profonda. Essa è in diretta

comunicazione con la superficie attraverso la porzione non satura del terreno e trae alimentazione sia dal

deflusso sotterraneo che proviene dalle zone a monte che dall'infiltrazione diretta delle acque superficiali

attraverso la soprastante superficie topografica.

Al di sotto del livello freatico, scendendo in profondità, le falde con carattere di artesianità hanno una

maggiore continuità spaziale. Esse sono caratterizzate, di norma, da un gradiente debole (~1,4%) e un

deflusso orizzontale, generalmente verso Sud Est. Essendo isolate dalla superficie dai livelli argillosi,

traggono alimentazione dalle zone a monte del limite delle risorgive, dalle acque contenute nell'acquifero

indifferenziato, ossia il materasso ghiaioso che nelle zone a nord delle risorgive affiora in superficie e

caratterizza l'intero spessore di depositi sciolti, fino al contatto con il substrato roccioso.

Il livello freatico risente del regime delle precipitazioni, per cui le sue oscillazioni seguono la

distribuzione annuale delle piogge, seppure con uno sfasamento legato alla velocità di ricarica

dell'acquifero. Sono, di norma, attesi livelli massimi della superficie freatica nei primi due trimestri

annuali in seguito all'effetto alimentante delle precipitazioni autunnali, mentre i minimi si registrano in

genere negli ultimi due trimestri che risentono del periodo estivo più siccitoso.

L'assetto della falda freatica in Comune di Torri di Quartesolo si basa sul rilievo di campagna del livello

idrico eseguito per la cartografia idrogeologica del PAT nel mese di Febbraio 2011.

Sulla base della campagna di misura piezometrica di Febbraio 2011, il livello freatico locale nel periodo

invernale risulta mediamente a -1,3 metri di profondità con oscillazioni tra -0,76 e -1,6 metri.

Sede operativa: VICENZA Via L. L. Zamenhof n.817, 36100 Vicenza - Cell: 3478537059 E-Mail: simonebarbieri74@gmail.com - Pec: simonebarbieri74@gpap.sicurezzapostale.it

8

L'oscillazione della superficie della falda dal piano campagna varia nel periodo da aprile 1999 a novembre 2007 tra un minimo di 1,5 m di profondità ad un massimo di 3,55 m, con valore medio attorno a 2,3 m da p.c.

3.4. Permeabilità dei terreni

La permeabilità dei terreni è un parametro intrinseco legato alle caratteristiche geotecniche e geomeccaniche dei terreni e delle rocce. Può essere di tipo primario, ossia per porosità, in cui la circolazione dell'acqua avviene tra i vuoti presenti tra i vari granuli che compongono il terreno, o secondario in cui la circolazione dell'acqua avviene fra i giunti di strato e le fratture dell'ammasso o lungo i condotti carsici.

Nel comune di Torri di Quartesolo è presente una serie di complessi idrogeologici, ottenuti raggruppando formazioni litologicamente e strutturalmente simili e pertanto rientranti all'interno di un range identificativo di permeabilità relativa, valutate sia in base ad osservazioni dirette sul terreno sia grazie all'abbondante documentazione bibliografica.

Facendo riferimento all'indagine geologica correlata al PAT elaborata dal Geol. Filippo Baratto, le unità litologiche sono state raggruppate in funzione del loro grado di permeabilità come segue:

Litotipi	Grado di permeabilità	Tipo di permeabilità	K indicativo (cm/s)	Tipo di permeabilità
Materiali granulari fluviali e/o fluvioglaciali antichi a tessitura prevalentemente ghiaiosa e sabbiosa più o meno addensati	Alto	Primaria	1	1A – Depositi molto permeabili per porosità
Materiali alluvionali, fluvioglaciali antichi a tessitura prevalentemente liomoso-argillosa	Molto basso	Primaria	10-5	3A – Depositi poco permeabili per porosità
Materiali alluvionali, fluvioglaciali antichi a tessitura prevalentemente ghiaiosa e sabbiosa	Basso	Primaria	10-2	2A – Depositi mediamente permeabili per porosità

3.5 - Pericolosità idraulica e geologica

Per una visione più completa delle condizioni idrauliche e geologiche del territorio in esame per quanto riguarda la "*Pericolosità idraulica e geologica*" si è tenuto conto degli elaborati grafici e delle relazioni esplicative di:

- □ "Piano stralcio per l'Assetto Idrogeologico del bacino idrografico del fiume Brenta Bacchiglione − Regione del Veneto", approvato con DPCM 21 novembre 2013 (G.U. n.97 del 28.04.2014) (Allegato 1);
- □ Fragilità del Piano Territoriale Provinciale di Coordinamento, PTCP, approvato con deliberazione di Giunta Regionale n. 236 del 3 marzo 2015 (Allegato 2);
- □ *PAT Carta delle Fragilità* e relativi dissesti idrogeologici (*Allegato 3*).

9

Dalla visione degli elaborati sono state individuate alcune zone fragili dal punto di vista idrogeologico, in particolare:

- Aree a pericolosità idraulica elevata (P3) riportate nel PAI e nel PTCP lungo l'asta del Fiume
 Tesina, in corrispondenza del centro dell'abitato di Torri di Quartesolo;
- Aree a pericolosità idraulica media (P2) riportate nel PAI e nel PTCP, lungo l'asta del Fiume Tesina, a Nord nei pressi di Marola, a Ovest al confine con il Comune di Vicenza, a Ovest di Via Longare;
- Aree a pericolosità idraulica moderata (P1) riportate nel PAI in gran parte del territorio comunale;
- Aree a rischio idraulico riportate nel PTCP e aree a deflusso difficoltoso riportate nel PAT in numerose porzioni territoriali.

Quasi tutti gli interventi di trasformazione ricadono in zone fragili dal punto di vista idraulico; solo gli interventi di trasformazione n.130 e n. 135 non ricadono in area a pericolosità idraulica.

Sede operativa: VICENZA Via L. L. Zamenhof n.817, 36100 Vicenza - Cell: 3478537059 E-Mail: simonebarbieri74@qmail.com - Pec: simonebarbieri74@qpap.sicurezzapostale.it

C.F. BRBSMN74C29E864X - P.I.V.A.: 03084090244

10

4. PARAMETRI IDROLOGICI ED IDRAULICI

4.1 - Premessa

Il calcolo della portata di pioggia passa attraverso tre fondamentali stadi processuali: determinazione dell'afflusso meteorico lordo, determinazione dell'afflusso meteorico netto e la trasformazione degli afflussi in deflussi.

4.2 - Determinazione dell'afflusso meteorico lordo

4.2.1 - Tempo di ritorno

Per quanto riguarda l'afflusso meteorico lordo, è utile valutare preliminarmente il tempo di ritorno da utilizzare compatibilmente con la tipologia realizzativa in progetto.

Per gli interventi in oggetto, si assume un Tempo di ritorno Tr pari a 50 anni

4.2.2 - Raccolta ed elaborazione dei dati pluviometrici

Per la stima della portata meteorica massima si è fatto riferimento alle precipitazioni di massima intensità registrate nella stazione pluviografica di Vicenza.

L'elaborazione si svolge direttamente sui valori osservati per le piogge brevi e intense (scrosci) cioè quelle con durata da pochi minuti fino ad un'ora e per le precipitazioni di più ore consecutive.

Alle precipitazioni massime di data durata si applica la seguente descrizione statistica, comune a molte serie idrologiche:

$$X(T_r) = X_m + F S_x$$

in cui:

- $X(T_r)$ il valore caratterizzato da un periodo di ritorno Tr, ossia l'evento che viene eguagliato o superato;
- X_m il valore medio degli eventi considerati;
- F fattore di frequenza;
- S_x scarto quadratico medio

Per il caso in esame si è utilizzata la distribuzione doppio-esponenziale di Gumbel.

Al fattore F si assegna l'espressione:

$$F = (Y (Tr) - YN)/SN$$

essendo la grandezza Y (Tr), funzione del Tempo di ritorno, la cosiddetta variabile ridotta, e YN e SN rappresentano la media e lo scarto quadratico medio della variabile ridotta: esse sono funzioni del numero N di osservazioni.

11

Ιv	I valori di questi parametri sono riportati nella tabella seguente. Valori dei parametri Y_N e S_N secondo Gumbel									
	MEDIA RIDOTTA Y _N									
N	0	1	2	3	4	5	6	7	8	9
10	0.4952	0.4996	0.5035	0.5070	0.5100	0.5128	0.5154	0.5177	0.5198	0.5217
20	0.5236	0.5252	0.5268	0.5282	0.5296	0.5309	0.5321	0.5332	0.5343	0.5353
30	0.5362	0.5371	0.5380	0.5388	0.5396	0.5403	0.5411	0.5417	0.5424	0.5430
40	0.5436	0.5442	0.5448	0.5453	0.5458	0.5463	0.5468	0.5472	0.5477	0.5481
50	0.5485	0.5489	0.5493	0.5497	0.5501	0.5504	0.5508	0.5511	0.5515	0.5518
60	0.5521	0.5524	0.5527	0.5530	0.5532	0.5535	0.5538	0.5540	0.5543	0.5545
70	0.5548	0.5550	0.552	0.5555	0.5557	0.5559	0.5561	0.5563	0.5565	0.5567
80	0.5569	0.5571	0.5573	0.5574	0.5576	0.5578	0.5580	0.5581	0.5583	0.5584
90	0.5586	0.5588	0.5589	0.5591	0.5592	0.5593	0.5595	0.5596	0.5598	0.5599
100	0.5600	0.5602	0.5603	0.5604	0.5605	0.5606	0.5608	0.5609	0.5610	0.5611
	-	•	DEVIA	ZIONE	STANDA	RD RID	OTTA S _N	1	1	1
N	0	1	2	3	4	5	6	7	8	9
10	1.0010	1.0148	1.0270	1.0378	1.0476	1.0564	1.0644	1.0717	1.0785	1.0847
20	1.0904	1.0958	1.1008	1.1055	1.1098	1.1140	1.1178	1.2115	1.1250	1.1283
30	1.1314	1.1344	1.1372	1.1399	1.1425	1.1449	1.1473	1.1496	1.1518	1.1538
40	1.1559	1.1578	1.1597	1.1614	1.1632	1.6449	1.1665	1.1680	1.1696	1.1710
50	1.1724	1.1738	1.1752	1.1765	1.1777	1.1789	1.1801	1.1813	1.1824	1.1835
60	1.1846	1.1856	1.1866	1.1876	1.1886	1.1895	1.1904	1.1913	1.1922	1.1931
70	1.1939	1.1947	1.1955	1.1963	1.1971	1.1978	1.1986	1.1993	1.2000	1.2007
80	1.2014	1.2020	1.2027	1.2033	1.2039	1.2045	1.2052	1.2057	1.2063	1.2069
90	1.2075	1.2080	1.2086	1.2091	1.2096	1.2101	1.2106	1.2111	1.2116	1.2121
100	1.2126	1.2130	1.2135	1.2139	1.2144	1.2148	1.2153	1.2157	1.2161	1.2165

La funzione Y(Tr) è legata al tempo di ritorno Tr dalla relazione:

$$Y (Tr) = - \ln \left(-\ln \left((Tr-1)/Tr \right) \right)$$

12

Con le idonee sostituzioni si ricava l'espressione:

$$X (Tr) = Xm - Sx YN/SN + Sx Y(Tr)/SN$$

in cui Xm - SxYN/SN è chiamata moda e rappresenta il valore con massima frequenza probabile ed il fattore Sx/SN con il termine alpha. In allegato sono dettagliatamente riportati i risultati dell'elaborazione eseguita.

Per ciascun tempo di ritorno si è provveduto a calcolare l'equazione pluviometrica mediante interpolazione. I risultati ottenuti forniscono i valori di a e n nell'equazione h = a tⁿ:

Coefficienti de	Coefficienti dell'equazione pluviometrica per T > 1 ora					
Tr (anni)	а	n				
50	68,30	0,21				

Coefficienti dell'equazione pluviometrica per T < 1 ora				
Tr (anni)	a	n		
50	67,21	0,40		

4.3 - Determinazione dell'afflusso meteorico netto

4.3.1 Premessa

La portata meteorica lorda Ql(t) che affluisce ad un bacino di superficie S durante un evento con intensità j(t) risulta Ql(t) = j(t)S. La portata meteorica netta Q(t) che affluisce alla rete di smaltimento è inferiore perché una parte dell'acqua evapora, viene intercettata o trattenuta dal suolo, riempie piccole cavità e soprattutto penetra per infiltrazione nel terreno. Per quantificare quantitativamente le perdite si utilizza il cosiddetto coefficiente di afflusso ϕ detto anche di assorbimento), che varia da 0 a 1: il valore 0 idealmente caratterizza una superficie infinitamente permeabile che non permette il deflusso superficiale, il valore unitario rappresenta la situazione di superficie impermeabile in cui l'infiltrazione è nulla. Di seguito si riportano i coefficienti di deflusso previsti dalla DGR. 2948/2009

Superficie scolante	φ
Aree agricole	0,10
Aree verdi	0,20
Superfici semipermeabili (grigliati drenanti, strade in terra battuta e stabilizzato)	0,60
Superfici impermeabili (coperture, viabilità)	0,90

Sede operativa: VICENZA Via L. L. Zamenhof n.817 , 36100 Vicenza - Cell: 3478537059 E-Mail: simonebarbieri74@gmail.com - Pec: simonebarbieri74@gmail.com - Pec: simonebarbieri74@epap.sicurezzapostale.it

C.F. BRBSMN74C29E864X - P.I.V.A.: 03084090244

13

Si precisa che i dati di impermeabilizzazione sono stati ricavati sulla base delle informazioni fornite dal progettista, e che, come previsto dalla D.G.R.V. 2848: "...Il grado di approfondimento e dettaglio della valutazione di compatibilità idraulica dovrà essere rapportato all'entità e, soprattutto, alla tipologia delle nuove previsioni urbanistiche ed ...omissis...Nel corso del complessivo processo approvativo degli interventi urbanistico-edilizi è richiesta con progressiva definizione la individuazione puntuale delle misure compensative, eventualmente articolata tra pianificazione strutturale (Piano di assetto del Territorio - PAT), operativa (Piano degli Interventi – PI), ovvero Piani Urbanistici Attuativi – PUA" quindi il calcolo idraulico seguente dovrà essere affinato nel corso dei successivi stadi della progettazione urbanistica

Si è proceduto quindi calcolando il coefficiente di deflusso equivalente, ovvero un coefficiente di afflusso calcolato come media ponderata sulle aree:

$$\phi = \frac{\sum_{i=1}^{n} \phi_i S_i}{S_{tot}}$$

4.3.2 Descrizione degli interventi del Piano e indicazione di quelli valutati

Le richieste accoglibili o parzialmente accoglibili del 4° Piano degli Interventi sono state n.28; nel presente studio è oggetto di valutazione di compatibilità idraulica la richiesta n.135, che prevede un'area di trasformazione modesta (con estensione areale compresa tra 1000 mq e 10.000 mq) (*Tav. 1*). Gli interventi che prevedono aree di trasformazione < 1.000 mq sono descritte dalla DGRV 2948/2009 come zone di trascurabile impermeabilizzazione; i singoli interventi tuttavia, nel loro complesso, possono comportare una potenziale impermeabilizzazione del territorio non trascurabile e quindi si prescrivono volumi di compensazione definiti sulla base della loro superficie (v. Cap.7).

N. Richiesta/ Intervento	Superficie (mq)	Classe di appartenenza (DGRV 2948)	Tipologia di intervento	Pericolosità idraulica	Valutazione di compatibilità idraulica
2	715.2	TRASCURABILE	Residenziale	P1 (PAI)	PRESCRIZIONI
4	670.0	TRASCURABILE	Residenziale	P1 (PAI) + R1 (PTCP)	PRESCRIZIONI
28	-	-	Modifica puntuale	P1 (PAI)	-
30	-	-	Modifica puntuale	P1 (PAI)	-
32	-	-	Modifica normativa	P1 (PAI)	-
103	-	-	Modalità attuative	P1 (PAI)	-
105	550.0	TRASCURABILE	Residenziale	P1 (PAI) + R2 (PTCP)	PRESCRIZIONI
106	880.4	TRASCURABILE	Residenziale	P1 (PAI)	PRESCRIZIONI
107	804.4	TRASCURABILE	Residenziale	P1 (PAI)	PRESCRIZIONI
108	439.0	TRASCURABILE	Residenziale	P1 (PAI) + R1 (PTCP)	PRESCRIZIONI
109	-	-	Modifica puntuale	P2 (PAI) + R2 (PTCP)	-

Sede operativa: VICENZA Via L. L. Zamenhof n.817 , 36100 Vicenza - Cell: 3478537059 E-Mail: simonebarbieri74@gmail.com - Pec: simonebarbieri.74@epap.sicurezzapostale.it C.F. BRBSMN74C29E864X - P.I.V.A. : 03084090244

14

114	-	-	Modifica normativa	P1 (PAI)	-
118	-	-	Modalità attuative	P1 (PAI)	-
120	-	-	Modifica puntuale	P1 (PAI)	-
121	-	-	Modifica destinazione d'uso	P2 (PAI) + R2 (PTCP)	-
125	957.6	TRASCURABILE	Residenziale	P1 (PAI)	PRESCRIZIONI
126	980.3	TRASCURABILE	Residenziale	P1 (PAI)	PRESCRIZIONI
127	-	-	Modalità attuative	P1 (PAI)	-
128	196.3	TRASCURABILE	Residenziale	P1 (PAI) + R1 (PTCP)	PRESCRIZIONI
130	550.5	TRASCURABILE	Residenziale	-	PRESCRIZIONI
131	-	-	Modifica puntuale	P1 (PAI)	-
135	1252.8	MODESTA	Parcheggio privato	-	CALCOLO DEI VOLUMI DI INVASO
137	ı	-	Modifica puntuale	P1 (PAI) + R1 (PTCP)	-
140	-	-	Modifica puntuale	P1 (PAI)	-
141	-	-	Modifica puntuale	P1 (PAI)	-
145	892.3	TRASCURABILE	Residenziale	P1 (PAI)	PRESCRIZIONI
147	-	-	Modifica destinazione d'uso	P1 (PAI)	-
148	-	-	Modifica puntuale	P1 (PAI) + R2 (PTCP)	-

Confronto tra stato attuale e progetto

Richiesta / intervento	Tipologia	Superficie trasformata (mq)	Øm attuale*	Ø'm progetto*
135	Realizzazione di area a parcheggio	1253	0,10	0,90

^{*}Il coefficiente di deflusso attuale non sempre corrisponde alla reale situazione di campagna ma essendo di difficile valutazione si è assunto cautelativamente il valore delle zone agricole, il coefficiente di progetto, invece, è un coefficiente medio, cautelativo, tarato sulla tipologia costruttiva dell'area

4.4 - Trasformazione afflussi in deflussi

Per ridurre la complessità dei calcoli necessari alla definizione dell'intera onda di piena, sono stati sviluppati metodi semplificati, che si basano su ietogrammi di progetto ad intensità costante per la durata τ dell'evento, correlati a coefficienti di afflusso ϕ parimenti costanti durante l'evento di data durata, in modo tale da ottenere portate di afflusso nette costanti nel tempo. Nello specifico sè fatto riferimento al Metodo della Corrivazione (o metodo cinematico lineare) si basa sulle considerazioni che:

15

 gocce di pioggia cadute contemporaneamente in punti diversi del bacino impiegano tempi diversi per arrivare sulla sezione di chiusura;

 esiste un tempo di corrivazione te caratteristico del bacino che rappresenta il tempo necessario perché la goccia caduta nel punto idraulicamente più lontano del bacino raggiunga la sezione di chiusura.

La formula che ne individua la portata è:

$$Q = \frac{h\phi S}{\tau} = j\phi S$$

con la portata massima che si verifica per un tempo di pioggia pari al tempo di corrivazione, quando cioè tutto il bacino ha contribuito alla formazione della stessa.

Nel calcolo della compatibilità idraulica si assume che la portata attuale in uscita sia pari a 5 l/s*ha

Per determinare il tempo di corrivazione relativo allo stato di progetto tc si potrà utilizzare la formulazione per cui tc=ta+tr, dove: tc= tempo di corrivazione, ta= tempo di accesso alla rete; tr=tempo di rete.

Calcolato con la formulazione prevista da Mambretti e Paoletti 1997 (Il metodo del condotto equivalente nella simulazione del deflusso superficiale in ambiente urbano", CSDU) e valida per sottobacini fino a 10 ettari, il tempo di accesso può essere espresso come segue:

$$ta = (3600^{(1-n)/4}*0.51i)/(si^{0.375}(a\phi Si)^{0.25}))^{4/(n+3)}$$

ta= tempo di accesso (s)

li= massima lunghezza del deflusso del bacino (m) stimata pari a li=19,1 (100*Si)0,548

si = pendenza del bacino (m/m)

 $\phi = coefficiente di deflusso del bacino$

Si = superficie di deflusso del bacino (ha)

a,n = coefficienti dell'equazione di possibilità pluviometrica

il tempo di rete sarà dato dai tempi di percorrenza di ogni singola canalizzazione seguendo il percorso più lungo della rete alla velocità della corrente, moltiplicato per un coefficiente correttivo pari a 1,5 (*Becciu, et alii, 1997*) quindi tr= Li/1,5*Vi.

5. MITIGAZIONE DELL'IMPATTO IDRAULICO

5.1- Calcolo dei volumi d'invaso temporaneo

Per ottemperare alle finalità di uno studio di compatibilità idraulica è necessario realizzare dei volumi di accumulo superficiali o interrati in grado di invasare temporaneamente le maggiori quantità d'acqua derivanti dall'incremento dell'impermeabilizzazione delle aree.

Sede operativa: VICENZA Via L. L. Zamenhof n.817 , 36100 Vicenza - Cell: 3478537059 E-Mail: simonebarbieri74@gmail.com - Pec: simonebarbieri.74@epap.sicurezzapostale.it C.F. BRBSMN74C29E864X - P.I.V.A. : 03084090244

16

Il predimensionamento dei volumi di accumulo e le verifiche idrauliche, sono state condotte utilizzando

il modello delle sole piogge, che si basa sul confronto tra la curva cumulata delle portate entranti e quella delle

portate uscenti ipotizzando che sia trascurabile l'effetto della trasformazione afflussi-deflussi operata dal

bacino e dalla rete drenante. Per lo studio in oggetto si è calcolato, per il tempo di precipitazione

considerato, il volume d'acqua affluito alla sezione di chiusura nella configurazione attuale e

successivamente nella configurazione di progetto, la differenza tra le due quantità rappresenta il volume

che risulta necessario invasare temporaneamente.

Nella modellizzazione considerata si ipotizza di concentrare i volumi d'acqua da invasare in

corrispondenza della sezione di uscita dei bacini relativi ai singoli interventi.

Il sistema determina in funzione di una serie di eventi critici considerati (scansione temporale ponderata

tra le piogge di varia durata) e della portata di deflusso (limitata teoricamente al valore costante relativo

alla portata attuale per pioggia di durata oraria pari a 5 1/s*ha)

altezza di pioggia di durata oraria con Tr=50 anni

portata di pioggia (Qp) alla sezione di chiusura calcolata con il metodo cinematico

• portata di deflusso(Qd)

volume di pioggia (Vp=Qp*Tpioggia)

volume di pioggia defluito nella rete idrografica (Vd=Qd*Tpioggia)

• volume d'invaso temporaneo (ΔV=Vp-Vd)

5.2- Misure compensative di massima previste dagli enti competenti

Ai sensi della DGR 2948/2009 si riportano quali dovranno essere le tipologie ed i criteri di mitigazione

dell'edificazione del territorio:

· Trascurabile impermeabilizzazione, potenziale intervento su superfici di estensione

inferiore a 0.1 ha: è sufficiente adottare buoni criteri costruttivi per ridurre le superfici

impermeabili, quali le superfici dei parcheggi;

· Modesta impermeabilizzazione potenziale Intervento su superfici comprese fra 0.1 e 1 ha:

oltre al dimensionamento dei volumi compensativi cui affidare funzioni di laminazione delle piene è

opportuno che le luci di scarico non eccedano le dimensioni di un tubo di diametro 200 mm e che i

tiranti idrici ammessi nell'invaso non eccedano il metro;

Significativa impermeabilizzazione potenziale, intervento su superfici comprese fra 1 e 10 ha;

interventi su superfici di estensione oltre 10 ha con Imp<0,3: andranno dimensionati i tiranti idrici

ammessi nell'invaso e le luci di scarico in modo da garantire la conservazione della portata massima

defluente dall'area in trasformazione ai valori precedenti l'impermeabilizzazione;

Marcata impermeabilizzazione potenziale, intervento su superfici superiori a 10 ha con

Imp>0,3: è richiesta la presentazione di uno studio di dettaglio molto approfondito.

Sede operativa: VICENZA Via L. L. Zamenhof n.817, 36100 Vicenza - Cell: 3478537059 E-Mail: simonebarbieri74@qmail.com - Pec: simonebarbieri74@qpap.sicurezzapostale.it

17

5.3 Descrizione dell'intervento e opere di mitigazione proposte

Di seguito, quindi, è descritto l'intervento (n. 135) considerato dal punto di vista della compatibilità idraulica, su indicazioni fornite dal Progettista, e si fornisce la soluzione di massima per mitigare l'impatto idraulico nonché le prescrizioni per l'attuazione delle stesse nelle successive fasi di realizzazione. Le opere di mitigazione previste sono state ponderate tenendo in considerazione la situazione idraulica, ed idrogeologica del singolo intervento. Per quanto riguarda il dimensionamento di tali volumi, si è fatto riferimento all'evento critico, con tempi di ritorno pari a 50 anni

INTERVENTO N°135

TR=50 anni						
superficie=	1253 mq				mc/ha 820	mc 103
coeff.deflusso=	0.90					
T(h)	H(mm)	Qp(l/s)	Qd(l/s)	Vp(mc)	Vd(mc)	$\Delta V(mc)$
2.00	79.00	12.4	0.6	89.1	4.5	84.6
4.00	91.38	7.2	0.6	103.0	9.0	94.0
6.00	99.50	5.2	0.6	112.2	13.5	98.7
8.00	105.70	4.1	0.6	119.2	18.0	101.2
10.00	110.77	3.5	0.6	124.9	22.6	102.4
12.00	115.09	3.0	0.6	129.8	27.1	102.7
14.00	118.88	2.7	0.6	134.1	31.6	102.5
16.00	122.26	2.4	0.6	137.9	36.1	101.8
18.00	125.32	2.2	0.6	141.3	40.6	100.7
20.00	128.13	2.0	0.6	144.5	45.1	99.4
22.00	130.72	1.9	0.6	147.4	49.6	97.8
24.00	133.13	1.7	0.6	150.1	54.1	96.0
26.00	135.38	1.6	0.6	152.7	58.6	94.0
28.00	137.51	1.5	0.6	155.1	63.2	91.9
30.00	139.51	1.5	0.6	157.3	67.7	89.7

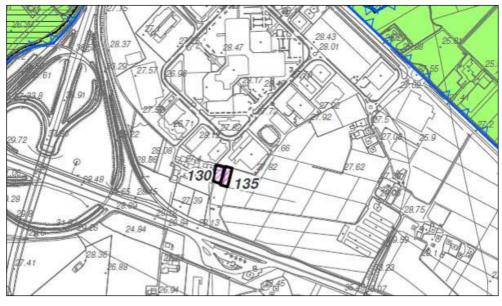
T(h) = tempo di pioggia

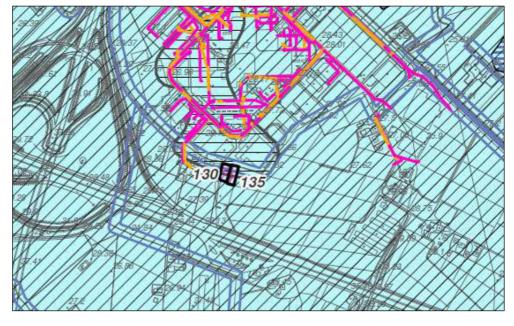
H = Altezza di pioggia

Qp = Portata di progetto

Qd = Portata di deflusso

Vp = Volume di progetto


Vd = Volume defluito


 $\Delta V = Volume da invasare$

Volume d'invaso massimo = 103 mc

Volume d'invaso per ettaro = 820 mc/ha

19

Situazione geologica idrogeologica del sito, idrografica e fognaria: La zona è caratterizzata da falda acquifera presente tra 0 e 2 metri. La permeabilità risulta di grado medio per porosità nella porzione meridionale del lotto mentre nella porzione settentrionale la permeabilità è di grado basso. Dal punto di vista idraulico <u>l'area in esame non ricade in zona a pericolosità/rischio idraulico.</u>

La rete idrografica presente in prossimità del lotto è costituita da un fossato che limita il lotto a Nord denominato "Scolo Settimo"; lungo il tracciato di Via Boschi, fino alla distanza di circa 120 m dal lotto, è presente la rete fognaria, separata per acque bianche e acque nere.

Interventi di mitigazione proposti: Volumi d'invaso interrati e/o superficiali con scarico controllato nel recettore più prossimo attraverso posa di un manufatto di controllo delle portate.

Per le aree considerate nel presente studio deve essere garantito il volume d'invaso minimo di 103 mc ovvero garantire per le eventuali frazioni di area un volume di invaso per ettaro almeno pari 820 mc/ha.

Nella figura a seguire è riportata l'ubicazione preliminare delle opere di mitigazione (volume d'invaso superficiale, di circa 103 mc (tirante 0,5 m per una superficie quindi di 206 mq), con scarico tarato nel corso idrico superficiale Scolo Settimo)

Per quanto riguarda gli aspetti qualitativi, per l'intervento in oggetto si dovrà fare riferimento a quanto disposto all'art.39 del Piano di Tutela delle Acque Approvato con la Deliberazione del Consiglio Regionale della Regione Veneto N. 107 del 5 novembre 2009, e alla D.G.R. del Veneto n°80 del 27/01/2011 "Norme Tecniche di attuazione del Piano di Tutela delle Acque – Linee guida Applicative" che sarà esplicitato in apposita relazione

Sede operativa: VICENZA Via L. L. Zamenhof n.817 , 36100 Vicenza - Cell: 3478537059 E-Mail: simonebarbieri74@gmail.com - Pec: simonebarbieri.74@epap.sicurezzapostale.it C.F. BRBSMN74C29E864X - P.I.V.A. : 03084090244

20

7. PRESCRIZIONI PER INTERVENTI < 1000 MQ

Per gli interventi con superfice trasformata <0,1 ha di cui è difficile definire preliminarmente l'impatto

idraulico, si forniscono delle prescrizioni di carattere generale , in quanti si ritiene che tutto il comune sia

caratterizzato da sofferenza idraulica

Nel caso di variazioni del grado di impermeabilizzazione, si forniscono i seguenti parametri:

- il volume specifico di invaso dovrà essere pari ad almeno 400 m³/ettaro di ambito di

urbanizzazione trasformato (ambito residenziale, servizi ed agricolo)

il volume specifico di invaso dovrà essere pari ad almeno 500 m³/ettaro di ambito di aree

industrializzate e viabilità trasformate

l'indice efficacie dei vuoti (o la porosità del riempimento) non potrà superare il valore pari al

25% del volume complessivo di trincee e/o vespai, salvo analisi di materiali specifici con

successivo riscontro mediante prove in sito;

i vespai in materiale granulare dovranno essere adeguatamente collegati tra loro mediante

condotte dirette (ad es. Ø 50 cm) e dovranno essere percorsi da condotte drenanti del

diametro minimo di 400 mm collegate al sistema di caditoie superficiali.

- nel computo dei volumi da destinare all'accumulo provvisorio delle acque meteoriche, non

potranno essere considerate le eventuali "vasche di prima pioggia"; queste infatti svolgono la

funzione di trattenere acqua nella fase iniziale dell'onda (anticipatamente al colmo di piena) e si

troveranno quindi già invasate nella fase di massima portata della piena.

8. PRESCRIZIONI COSTRUTTIVE PER INTERVENTI IN ZONA DI PERICOLOSITA'

IDRAULICA

Per tutti gli interventi che ricadono in zone a pericolosità idraulica si forniscono le seguenti prescrizioni

costruttive:

• dovrà essere valutata e giustificata in apposita relazione tecnica, il piano d'imposta del

fabbricato sulla base della valutazione incrociata tra i tiranti stimati dalle carte degli allagamenti

del Piano Gestione del Rischio Alluvioni ed il contesto plano altimetrico della zona

d'intervento, al fine di garantire la sicurezza idraulica dell'edificio in costruzione e non trasferire

il pericolo a contesti limitrofi;

• è vietato costruire vani interrati;

• i manufatti di laminazione e di scarico dovranno prevedere un Piano di manutenzione

Sede operativa: VICENZA Via L. L. Zamenhof n.817, 36100 Vicenza - Cell: 3478537059

21

9. TABELLA RIASSUNTIVA

INTERVENTO	VOLUME D'INVASO	VOLUME D'INVASO /HA
	(TR=50 ANNI) mc	(TR=50 ANNI) mc
135	103	820

10. CONCLUSIONI

Riassumendo quanto esposto nel presente studio risulta che la realizzazione di alcuni interventi previsti nel presente P.I. comportano, per alcuni, un peggioramento dal punto di vista dell'impatto idraulico, rispetto alla situazione attuale.

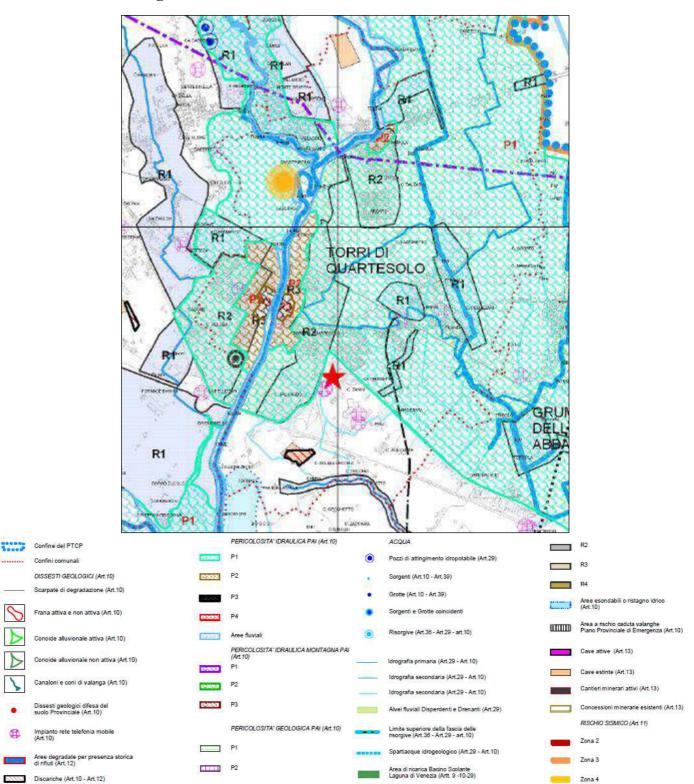
In tale senso, al fine di utilizzare al meglio le superfici di progetto senza perturbare l'attuale assetto idraulico ed idrogeologico, sono stati indicate in via preliminare, nei capitoli precedenti, le misure di mitigazione possibili, in relazione alla situazione idrogeologica locale.

Si ricorda che, come previsto dalla D.G.R.V. 2948: Nel corso del complessivo processo approvativo degli interventi urbanistico-edilizi è richiesta con progressiva definizione la individuazione puntuale delle misure compensative, eventualmente articolata tra pianificazione strutturale (Piano di assetto del Territorio - PAT), operativa (Piano degli Interventi – PI), ovvero Piani Urbanistici Attuativi – PUA" quindi il calcolo idraulico seguente dovrà essere affinato nel corso dei successivi stadi della progettazione urbanistica.

ELENCO ALLEGATI

- 1. Estratto da Tavola "Fragilità" del PTCP della Provincia di Vicenza estratto non in scala;
- 2. Estratto delle Tavole n. 41 e 49 del P.A.I estratti non in scala;
- 3. Tavola n°3 "Fragilità" PAT Comune di Torri di Quartesolo non in scala;
- 4. Autocertificazione di idoneità professionale;
- 5. Autocertificazione sui dati studiati ed elaborati;
- 6. Scheda di sintesi;
- 7. Elaborazioni pluviometriche;
- 8. Tavola n°1: Carta della pericolosità e del rischio idraulico;
- 9. Tavola n°2: Carta con elementi di idrogeologica, idrografia e rete fognaria.

22


LINEE ELETTRICHE (Art. 10)

da 50 a 133 Kw

da 221 a 380 Kw

Metanodotti (Art.10)

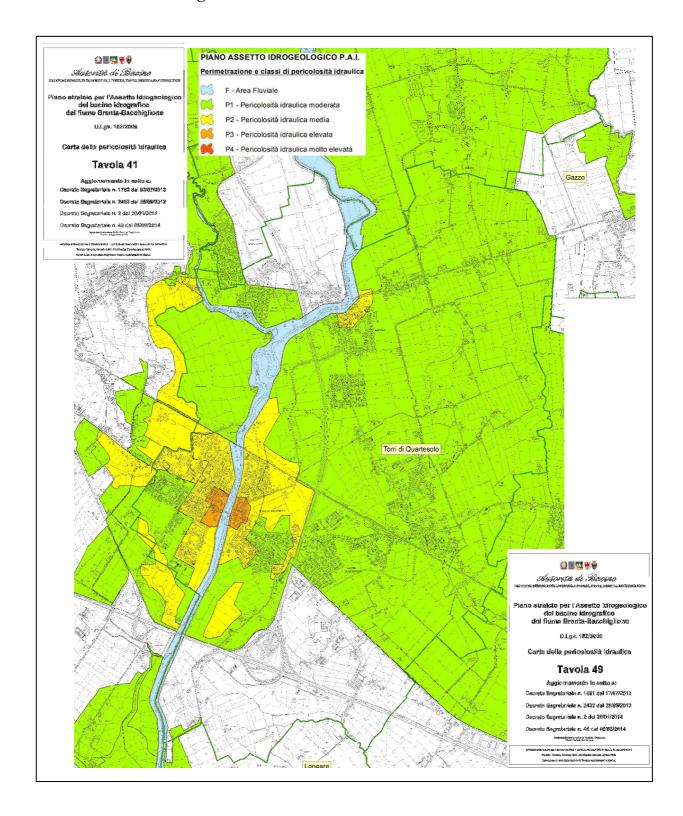
Allegato n°1: Estratto da Tavola n°3 - FRAGILITA'del P.T.C.P.

Sede operativa: VICENZA Via L. L. Zamenhof n.817 , 36100 Vicenza - Cell: 3478537059 E-Mail: simonebarbieri74@gmail.com - Pec: simonebarbieri.74@epap.sicurezzapostale.it C.F. BRBSMN74C29E864X - P.I.V.A. : 03084090244

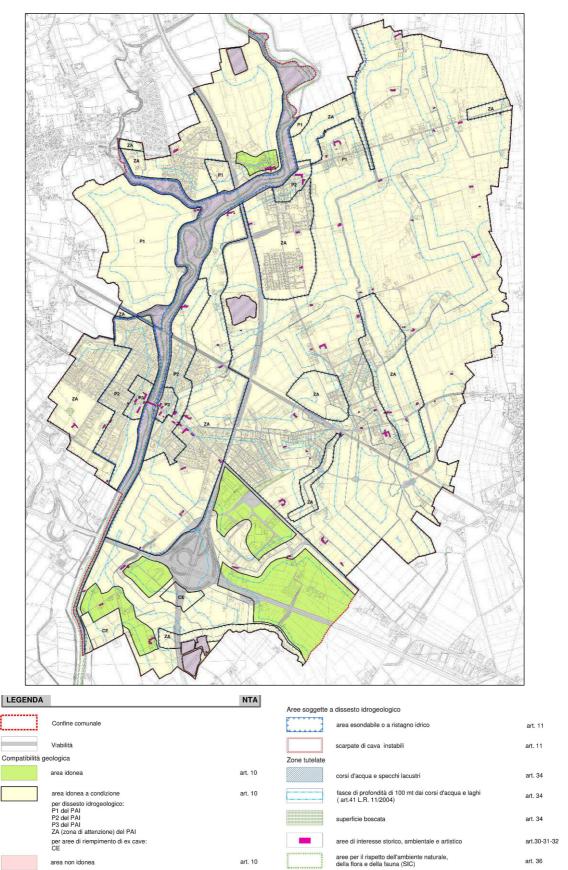
RISCHIO IDRAULICO PIANO PROVINCIALE DI EMERGENZA (Art.10) CASSE DI ESPANSIONE E BACINI DI LAMINAZIONI

Opere esistenti

Opere proposte


Depuratore (Art.29 - Art.10)

Acquiferi inquinati (Art. 10 - Art. 29)


Aziende a rischio incidente rileva (art.6 DLGS 334/99) (Art.33)

Aziende a rischio incidente rilevante (art.8 DLGS 334/99) (Art.33)

Allegato n°2: Estratto da Tavole n°41 e 49 - PAI

Allegato n°3: "Carta delle Fragilità" del Giugno 2013 - PAT di Torri di Quartesolo

25

Allegato nº4

Spett.le

Sezione Bacino idrografico Brenta Bacchiglione - Sezione di Vicenza

Contra S. Mure Rocco, 51

36100 Vicenza (VI)

Oggetto: Studio di compatibilità idraulica relativo al 4º Piano degli interventi del

Comune di Torri di Quartesolo. Autocertificazione ai sensi dell'art.46 del D.P.R. Nº445

del 28/12/2000

<u>AUTOCERTIFICAZIONE DI IDONEITA' PROFESSIONALE</u>

Il sottoscritto Simone Barbieri avente studio in Via Zamenhof n°817 - 36100 Vicenza, iscritto

all'ordine dei Geologi del Veneto al nº 607 sotto la propria personale responsabilità e per

effetto del DPR 445/2000 per le finalità contenute nella DGRV 2948/2009

dichiara

di aver conseguito laurea in Scienze Geologiche di 2° livello e di aver maturato nel corso della

propria attività professionale esperienza nei settori dell'idrologia e dell'idraulica.

Vicenza, 27 luglio 2018

Sede operativa: VICENZA Via L. L. Zamenhof n.817, 36100 Vicenza - Cell: 3478537059 E-Mail: simonebarbieri74@qmail.com - Pec: simonebarbieri74@qpap.sicurezzapostale.it

C.F. BRBSMN74C29E864X - P.I.V.A.: 03084090244

26

Allegato n°5

Spett.le

Sezione Bacino idrografico Brenta Bacchiglione - Sezione di Vicenza

Contra S. Mure Rocco, 51

36100 Vicenza (VI)

Oggetto: Studio di compatibilità idraulica relativo al 4º Piano degli interventi del

Comune di Torri di Quartesolo. Autocertificazione ai sensi dell'art.46 del D.P.R. N°445

del 28/12/2000

<u>AUTOCERTIFICAZIONE SUI DATI STUDIATI ED ELABORATI</u>

Il sottoscritto Simone Barbieri avente studio in Via Via Zamenhof n°817 - 36100 Vicenza,

iscritto all'ordine dei Geologi del Veneto al nº 607, sotto la propria personale responsabilità e

per effetto del DPR 445/2000 per le finalità contenute nella DGRV 2948/2009

dichiara

• di aver preso coscienza dello stato dei luoghi, delle condizioni locali e di tutte le

circostanze generali e particolari che possono in qualsiasi modo influire sui contenuti e

sulle verifiche dello studio in premessa;

• sono stati esaminati tutti i dati utili alla corretta elaborazione e stesura dei documenti

imposti per la compatibilità idraulica nel rispetto di quanto indicato nell'allegato A della

DGRV 2949 del 06-10-2009

• Sono state consultate e recepite appieno le perimetrazioni cartografiche relative alla

pericolosità e rischio idraulica riportate nel PAI dell'Autorità di Bacino competente e

nel PTCP vigente redatto dalla Provincia di Vicenza e si sono riscontrati ed evidenziati i

casi siano previste trasformazioni urbanistiche di Piano che le riguardino

• sono state eseguite le elaborazioni previste dalla normativa regionale vigente su tutte le

aree soggette a trasformazione attinenti la pratica di cui all'oggetto, non tralasciando

nulla in termini di superfici, morfologia, dati tecnico, rilievi utili e/o necessari e nella

verifica della loro correttezza.

Vicenza, 27 luglio 2018

Allegato n°6: SCHEDA DI SINTESI PER INTERVENTO CON SUP TRASFORMATA> 0,1 HA

Intervento nº135

Area trasformata: 1253 mq

• Impermeabilizzazione potenziale: modesta

• L'intervento di tipo: parcheggio privato

• Coefficiente di deflusso previsto: 0,90

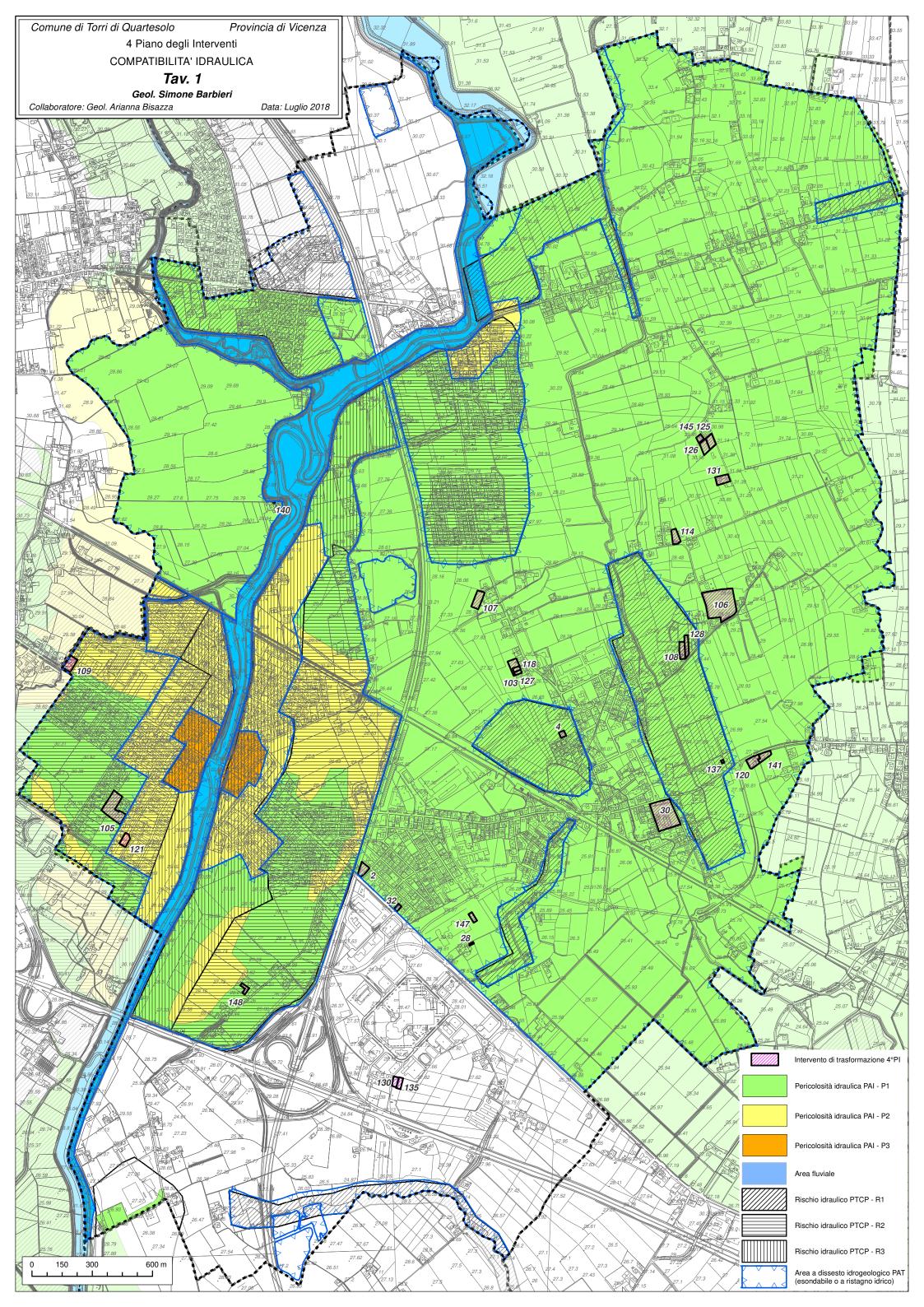
• Idrogeologia: terreni a permeabilità media e bassa per porosità

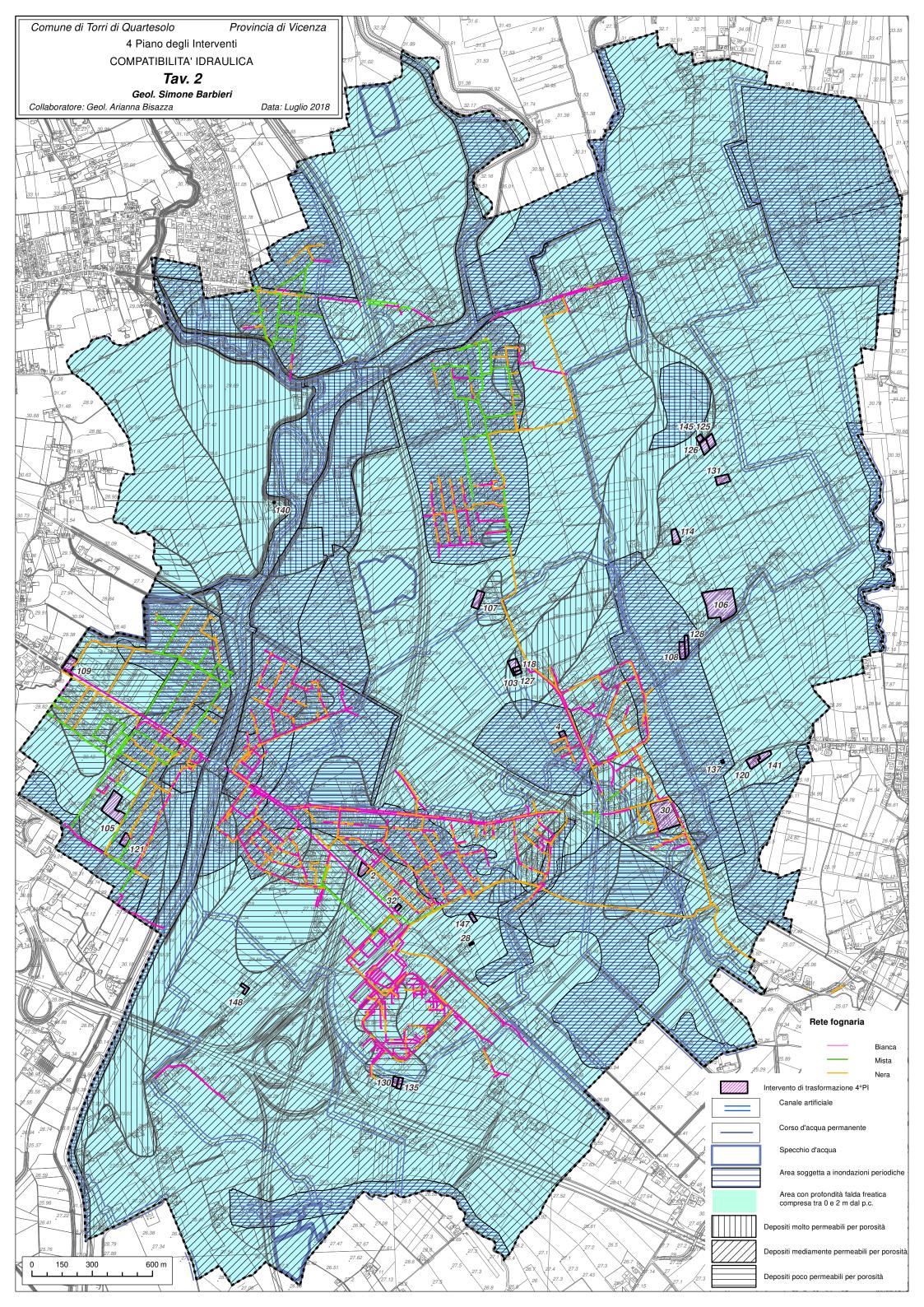
• Falda acquifera: da 0 a 2 m

• Rete idraulica - corso d'acqua più vicino: fossato Scolo Settimo al limite Nord dell'area

• Rete fognaria separata acque nere e bianche ad Ovest, lungo Via Boschi, a circa 120m

• L'area non ricade in zone a pericolosità/ rischio idraulico


Interventi di mitigazione proposti: Volumi d'invaso interrati e/o superficiali con scarico controllato nel recettore più prossimo attraverso posa di un manufatto di controllo delle portate.


Per le aree considerate nel presente studio deve essere garantito il volume d'invaso minimo di 103 mc ovvero garantire per le eventuali frazioni di area un volume di invaso per ettaro almeno pari 820 mc/ha.

• Vi= 103 mc

• $Vi \times ha = 820 \text{ mc} \times ha$.

C.F. BRBSMN74C29E864X - P.I.V.A.: 03084090244

